gaussian PDF: 1 to 10 of 100 results fetched - page 1 [au]

Gaussian Markov Random Fields: Theory and Applications (Chapman & Hall/CRC Monographs on Statistics & Applied Probability)

https://www.amazon.co.uk/Gaussian-Markov-Random-Fields-Appli...
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studies and, online, a c-library for fast and exact simulation. With chapters contributed by leading researchers in the field, this volume is essential reading for statisticians working in spatial theory and its applications, as well as quantitative researchers in a wide range of science fields where spatial data analysis is important.
Published by: Chapman and Hall/CRC | Publication date: 02/18/2005
Kindle book details: Kindle Edition, 280 pages

Unsupervised Machine Learning in Python: Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis

https://www.amazon.co.uk/Unsupervised-Machine-Learning-Pytho...
In a real-world environment, you can imagine that a robot or an artificial intelligence won’t always have access to the optimal answer, or maybe there isn’t an optimal correct answer. You’d want that robot to be able to explore the world on its own, and learn things just by looking for patterns.Think about the large amounts of data being collected today, by the likes of the NSA, Google, and other organizations. No human could possibly sift through all that data manually. It was reported recently in the Washington Post and Wall Street Journal that the National Security Agency collects so much surveillance data, it is no longer effective.Could automated pattern discovery solve this problem?Do you ever wonder how we get the data that we use in our supervised machine learning algorithms?Kaggle always seems to provide us with a nice CSV, complete with Xs and corresponding Ys.If you haven’t been involved in acquiring data yourself, you might not have thought about this, but someone has to make this data!A lot of the time this involves manual labor. Sometimes, you don’t have access to the correct information or it is infeasible or costly to acquire.You still want to have some idea of the structure of the data.This is where unsupervised machine learning comes into play.In this book we are first going to talk about clustering. This is where instead of training on labels, we try to create our own labels. We’ll do this by grouping together data that looks alike.The 2 methods of clustering we’ll talk about: k-means clustering and hierarchical clustering.Next, because in machine learning we like to talk about probability distributions, we’ll go into Gaussian mixture models and kernel density estimation, where we talk about how to learn the probability distribution of a set of data.One interesting fact is that under certain conditions, Gaussian mixture models and k-means clustering are exactly the same! We’ll prove how this is the case.Lastly, we’ll look at the theory behind principal components analysis or PCA. PCA has many useful applications: visualization, dimensionality reduction, denoising, and de-correlation. You will see how it allows us to take a different perspective on latent variables, which first appear when we talk about k-means clustering and GMMs.All the algorithms we’ll talk about in this course are staples in machine learning and data science, so if you want to know how to automatically find patterns in your data with data mining and pattern extraction, without needing someone to put in manual work to label that data, then this book is for you.All of the materials required to follow along in this book are free: You just need to able to download and install Python, Numpy, Scipy, Matplotlib, and Sci-kit Learn.
Publication date: 05/22/2016
Kindle book details: Kindle Edition, 38 pages

Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman & Hall/CRC Texts in Statistical Science)

https://www.amazon.co.uk/Statistical-Rethinking-Bayesian-Exa...
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work.The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation.By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web ResourceThe book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Published by: Chapman and Hall/CRC | Publication date: 01/03/2018
Kindle book details: Kindle Edition, 487 pages

The War of the Sexes: The Problems & The Solutions

https://www.amazon.co.uk/War-Sexes-Problems-Solutions-ebook/...
To restore balance to the issue topics covered include:A brief history of the War of the Sexes.The usual differences in upbringing for boys & girls.The many ability and other differences between the sexes.The maternal instinct and teen & single mothers.The many ways in which a woman can capture a man.Exploitation of women in the consumer society.Decadent societies with high divorce rates.Women taking over the workforce at the expense of men.Women moving into higher management and politics.The key reasons for, and solutions to, the increasing decadence and moral and financial bankruptcy in the West.Planning relationships, marriage, and children.Improving relationships & making your children smarter.The contact hypothesis and mere exposure research.
Author: G Mohr
Publication date: 08/08/2018
Kindle book details: Kindle Edition, 487 pages

Nonparametric Goodness-of-Fit Testing Under Gaussian Models (Lecture Notes in Statistics)

https://www.amazon.co.uk/Nonparametric-Goodness-Testing-Gaus...
This book presents the modern theory of nonparametric goodness-of-fit testing. It fills the gap in modern nonparametric statistical theory by discussing hypothesis testing and addresses mathematical statisticians who are interesting in the theory of non-parametric statistical inference. It will be of interest to specialists who are dealing with applied non-parametric statistical problems relevant in signal detection and transmission and in technical and medical diagnostics among others.
Published by: Springer | Publication date: 10/29/2002
Kindle book details: Kindle Edition, 457 pages

SIGNAL PROCESSING in MATLAB. CONTINUOUS and DISCRETE WAVELETS ANALYSIS

https://www.amazon.co.uk/PROCESSING-CONTINUOUS-DISCRETE-WAVE...
MATLAB Wavelet Toolbox software includes a large number of wavelets that you can use for both continuous and discrete analysis. For discrete analysis, examples include ortogonal wavelets (Daubechies’ extremal phase and least asymmetric wavelets) and B-spline biorthogonal wavelets. For continuous analysis, the Wavelet Toolbox software includes Morlet, Meyer, derivative of Gaussian, and Paul wavelets. The choice of wavelet is dictated by the signal or image characteristics and the nature of the application. If you understand the properties of the analysis and synthesis wavelet, you can choose a wavelet that is optimized for your application. Wavelet families vary in terms of several important properties. Examples include: • Support of the wavelet in time and frequency and rate of decay. • Symmetry or antisymmetry of the wavelet. The accompanying perfect reconstruction filters have linear phase. • Number of vanishing moments. Wavelets with increasing numbers of vanishing moments result in sparse representations for a large class of signals and images. • Regularity of the wavelet. Smoother wavelets provide sharper frequency resolution. Additionally, iterative algorithms for wavelet construction converge faster. • Existence of a scaling function PHI. For continuous analysis, the Wavelet Toolbox software analytic wavelet-based analysis for select wavelets. Signal Reconstruction from Continuous Wavelet Transform Coefficients illustrates the use of the inverse continuous wavelet transform (CWT) for simulated and real-world signals. Entering waveinfo at the command line displays a survey of the main properties of available wavelet families. For a specific wavelet family, use waveinfo with the wavelet family short name. You can find the wavelet family short names listed in the following table and on the reference page for waveinfo.
Author: G. Peck
Publication date: 08/08/2018
Kindle book details: Kindle Edition, 457 pages

Gaussian and Non-Gaussian Linear Time Series and Random Fields (Springer Series in Statistics)

https://www.amazon.co.uk/Gaussian-Non-Gaussian-Linear-Spring...
The principal focus here is on autoregressive moving average models and analogous random fields, with probabilistic and statistical questions also being discussed. The book contrasts Gaussian models with noncausal or noninvertible (nonminimum phase) non-Gaussian models and deals with problems of prediction and estimation. New results for nonminimum phase non-Gaussian processes are exposited and open questions are noted. Intended as a text for gradutes in statistics, mathematics, engineering, the natural sciences and economics, the only recommendation is an initial background in probability theory and statistics. Notes on background, history and open problems are given at the end of the book.
Published by: Springer | Publication date: 09/27/2012
Kindle book details: Kindle Edition, 247 pages

Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series)

https://www.amazon.co.uk/Machine-Learning-Probabilistic-Pers...
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Published by: The MIT Press | Publication date: 09/07/2012
Kindle book details: Kindle Edition, 1104 pages

Quantum Theory (Dover Books on Physics)

https://www.amazon.co.uk/Quantum-Theory-Dover-Books-Physics-...
This superb text by David Bohm, formerly Princeton University and Emeritus Professor of Theoretical Physics at Birkbeck College, University of London, provides a formulation of the quantum theory in terms of qualitative and imaginative concepts that have evolved outside and beyond classical theory. Although it presents the main ideas of quantum theory essentially in nonmathematical terms, it follows these with a broad range of specific applications that are worked out in considerable mathematical detail. Addressed primarily to advanced undergraduate students, the text begins with a study of the physical formulation of the quantum theory, from its origin and early development through an analysis of wave vs. particle properties of matter. In Part II, Professor Bohm addresses the mathematical formulation of the quantum theory, examining wave functions, operators, Schrödinger's equation, fluctuations, correlations, and eigenfunctions.Part III takes up applications to simple systems and further extensions of quantum theory formulation, including matrix formulation and spin and angular momentum. Parts IV and V explore the methods of approximate solution of Schrödinger's equation and the theory of scattering. In Part VI, the process of measurement is examined along with the relationship between quantum and classical concepts.Throughout the text, Professor Bohm places strong emphasis on showing how the quantum theory can be developed in a natural way, starting from the previously existing classical theory and going step by step through the experimental facts and theoretical lines of reasoning which led to replacement of the classical theory by the quantum theory.
Author: David Bohm
Published by: Dover Publications | Publication date: 04/25/2012
Kindle book details: Kindle Edition, 673 pages

Financial Modeling Under Non-Gaussian Distributions (Springer Finance)

https://www.amazon.co.uk/Financial-Modeling-Non-Gaussian-Dis...
This book examines non-Gaussian distributions. It addresses the causes and consequences of non-normality and time dependency in both asset returns and option prices. The book is written for non-mathematicians who want to model financial market prices so the emphasis throughout is on practice. There are abundant empirical illustrations of the models and techniques described, many of which could be equally applied to other financial time series.
Published by: Springer | Publication date: 04/05/2007
Kindle book details: Kindle Edition, 541 pages
[1] 2345Next
PDFfetch