big data PDF: 31 to 40 of 1000 results fetched - page 4 [ec]

Zoolz is the only cloud solution that keeps your data even when you disconnect your drives
Now you can translate your PDF documents automatically to dozens of languages.

Oracle Big Data Handbook

www.ebooks.com/cj.asp?IID=1122765&cjsku=1122765...
Transform Big Data into Insight "In this book, some of Oracle's best engineers and architects explain how you can make use of big data. They'll tell you how you can integrate your existing Oracle solutions with big data systems, using each where appropriate and moving data between them as needed." -- Doug Cutting, co-creator of Apache Hadoop Cowritten by members of Oracle's big data team, Oracle Big Data Handbook provides complete coverage of Oracle's comprehensive, integrated set of products for acquiring, organizing, analyzing, and leveraging unstructured data. The book discusses the strategies and technologies essential for a successful big data implementation, including Apache Hadoop, Oracle Big Data Appliance, Oracle Big Data Connectors, Oracle NoSQL Database, Oracle Endeca, Oracle Advanced Analytics, and Oracle's open source R offerings. Best practices for migrating from legacy systems and integrating existing data warehousing and analytics solutions into an enterprise big data infrastructure are also included in this Oracle Press guide. Understand the value of a comprehensive big data strategy Maximize the distributed processing power of the Apache Hadoop platform Discover the advantages of using Oracle Big Data Appliance as an engineered system for Hadoop and Oracle NoSQL Database Configure, deploy, and monitor Hadoop and Oracle NoSQL Database using Oracle Big Data Appliance Integrate your existing data warehousing and analytics infrastructure into a big data architecture Share data among Hadoop and relational databases using Oracle Big Data Connectors Understand how Oracle NoSQL Database integrates into the Oracle Big Data architecture Deliver faster time to value using in-database analytics Analyze data with Oracle Advanced Analytics (Oracle R Enterprise and Oracle Data Mining), Oracle R Distribution, ROracle, and Oracle R Connector for Hadoop Analyze disparate data with Oracle Endeca Information Discovery Plan and implement a big data governance strategy and develop an architecture and roadmap
Category: Computers. ISBN: 9780071827263

Practical Big Data Analytics

www.ebooks.com/cj.asp?IID=95945996&cjsku=95945996...
Get command of your organizational Big Data using the power of data science and analytics About This Book A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Who This Book Is For The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience. What You Will Learn Get a 360-degree view into the world of Big Data, data science and machine learning Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications Understand corporate strategies for successful Big Data and data science projects Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies In Detail Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. Style and approach This book equips you with a knowle
Category: Computers. ISBN: 9781783554393

Big Data Governance

www.ebooks.com/cj.asp?IID=1052157&cjsku=1052157...
Written by a leading expert in the field, this guide focuses on the convergence of two major trends in information managementbig data and information governanceby taking a strategic approach oriented around business cases and industry imperatives. With the advent of new technologies, enterprises are expanding and handling very large volumes of data; this book, nontechnical in nature and geared toward business audiences, encourages the practice of establishing appropriate governance over big data initiatives and addresses how to manage and govern big data, highlighting the relevant processes, procedures, and policies. It teaches readers to understand how big data fits within an overall information governance program; quantify the business value of big data; apply information governance concepts such as stewardship, metadata, and organization structures to big data; appreciate the wide-ranging business benefits for various industries and job functions; sell the value of big data governance to businesses; and establish step-by-step processes to implement big data governance.
Category: Computers. ISBN: 9781583473771

Big Data Computing

www.ebooks.com/cj.asp?IID=95641900&cjsku=95641900...
This book unravels the mystery of Big Data computing and its power to transform business operations. The approach it uses will be helpful to any professional who must present a case for realizing Big Data computing solutions or to those who could be involved in a Big Data computing project. It provides a framework that enables business and technical managers to make optimal decisions necessary for the successful migration to Big Data computing environments and applications within their organizations.
Category: Business. ISBN: 9781498715331

Handbook of Big Data

www.ebooks.com/cj.asp?IID=2527581&cjsku=2527581...
Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice. Offering balanced coverage of methodology, theory, and applications, this handbook: Describes modern, scalable approaches for analyzing increasingly large datasets Defines the underlying concepts of the available analytical tools and techniques Details intercommunity advances in computational statistics and machine learning Handbook of Big Data also identifies areas in need of further development, encouraging greater communication and collaboration between researchers in big data sub-specialties such as genomics, computational biology, and finance.
Category: Business. ISBN: 9781482249071

Big Data in History

www.ebooks.com/cj.asp?IID=95737418&cjsku=95737418...
Big Data in History introduces the project to create a world-historical archive, tracing the last four centuries of historical dynamics and change. Chapters address the archive's overall plan, how to interpret the past through a global archive, the missions of gathering records, linking local data into global patterns, and exploring the results.
Category: History. ISBN: 9781137378965

Big Data Management

www.ebooks.com/cj.asp?IID=95639133&cjsku=95639133...
This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.
Category: Business. ISBN: 9783319454979

Advancing Big Data Benchmarks

www.ebooks.com/cj.asp?IID=2473998&cjsku=2473998...
This book constitutes the thoroughly refereed joint proceedings of the Third and Fourth Workshop on Big Data Benchmarking. The third WBDB was held in Xi'an, China, in July 2013 and the Fourth WBDB was held in San Jos, CA, USA, in October, 2013. The 15 papers presented in this book were carefully reviewed and selected from 33 presentations. They focus on big data benchmarks; applications and scenarios; tools, systems and surveys.
Category: Computers. ISBN: 9783319105956

Web and Big Data

www.ebooks.com/cj.asp?IID=95908704&cjsku=95908704...
This book constitutes the thoroughly refereed post-conference proceedings of the First APWeb-WAIM 2017 Workshops, held jointly with the First International Joint Conference APWeb-WAIM 2017, held in Beijing, China, in July 2017. The 25 full papers presented were carefully reviewed and selected from 40 submissions. The papers originating from six workshops present cutting-edge ideas, results, experiences, techniques, and tools from all aspects of web data management with the focus on mobile web data analytics; big spatial data and urban computing; graph data management and analytics; mobility analytics from spatial and social data.
Category: Computers. ISBN: 9783319697802

Big Data Analytics

www.ebooks.com/cj.asp?IID=1815877&cjsku=1815877...
With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market. Comparing and contrasting the different types of analysis commonly conducted with big data, this accessible reference presents clear-cut explanations of the general workings of big data tools. Instead of spending time on HOW to install specific packages, it focuses on the reasons WHY readers would install a given package. The book provides authoritative guidance on a range of tools, including open source and proprietary systems. It details the strengths and weaknesses of incorporating big data analysis into decision-making and explains how to leverage the strengths while mitigating the weaknesses. Describes the benefits of distributed computing in simple terms Includes substantial vendor/tool material, especially for open source decisions Covers prominent software packages, including Hadoop andOracle Endeca Examines GIS and machine learning applications Considers privacy and surveillance issues The book further explores basic statistical concepts that, when misapplied, can be the source of errors. Time and again, big data is treated as an oracle that discovers results nobody would have imagined. While big data can serve this valuable function, all too often these results are incorrect, yet are still reported unquestioningly. The probability of having erroneous results increases as a larger number of variables are compared unless preventative measures are taken. The approach taken by the authors is to explain these concepts so managers can ask better questions of their analysts and vendors as to the appropriateness of the methods used to arrive at a conclusion. Because the world of science and medicine has been grappling with similar issues in the publication of studies, the authors draw on their efforts and apply them to big data.
Category: Computers. ISBN: 9781482234510
Previous123 [4] 5678Next